

TEST REPORT

Product Name : hybrid inverter Model Number : HYD 6000-ES, HYD 5000-ES, HYD 4000-ES, HYD 3600-ES, HYD 3000-ES

Prepared for Address	:	Shenzhen SOFAR SOLAR Co., Ltd. 401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China
Prepared by Address		EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Tel: (0755) 26954280 Fax: (0755) 26954282

Report Number	:	ES190710013E
Date of Test	:	July 10, 2019 to July 12, 2019 &
		January 20, 2021 to January 27, 2021
Date of Report	:	January 28, 2021

TABLE OF CONTENT

	Test Report Description	Page
1.	SUMMARY OF TEST RESULT	5
2.		
	2.1. Description of Device (EUT)2.2. Independent Operation Modes	6
	2.2. The pendent Operation modes	
	2.4. Description of Test Facility	
	2.5. Measurement Uncertainty	
3.	MEASURING DEVICE AND TEST EQUIPMENT	
	3.1. For Power Line Conducted Emission Measurement	
	3.2. For Voltage Distortion in Differential mode Measurement	
	3.3. For Radiated Emission Measurement	8
4.	POWER LINE CONDUCTED EMISSION MEASUREMENT	
	4.1. Block Diagram of Test Setup	9
	4.2. Measuring Standard	
	4.3. Power Line Conducted Emission Limits (Group 1 Class B)	
	4.4. Test Procedure	
	4.5. Measuring Results	
5.	Voltage Distortion in Differential mode Measurement	
	5.1. Block Diagram of Test Setup	
	5.2. Measuring Standard	
	5.3. Voltage Distortion in Differential mode Limits	
	5.4. Test Procedure	
	5.5. Measuring Results	
6.	RADIATED EMISSION MEASUREMENT (UP TO 1GHz)	
	6.1. Block Diagram of Test Setup	
	6.2. Measuring Standard	
	6.3. Radiated Emission Limits (Group 1 Class B)	
	6.4. Test Procedure	
	6.5. Measuring Results	
7.		
	7.1. Photos of Conducted Emission Measurement	
	7.2. Photos of Voltage Distortion in Differential mode Measurement	
	7.3. Photos of Radiation Emission Measurement	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ES190710013E

TEST REPORT DESCRIPTION

Applicant	:	Shenzhen SOFAR SOLAR Co., Ltd.
Manufacturer	:	Shenzhen SOFAR SOLAR Co., Ltd.
Trademark	:	N/A
EUT	:	hybrid inverter
Model No.	:	HYD 6000-ES, HYD 5000-ES, HYD 4000-ES, HYD 3600-ES, HYD 3000-ES
Remark	:	This Report Shows that the EUT is technically complicant with The EMC (Radiation and Conduction) of SANS 211 requirements.

Measurement Procedure Used:

SANS 211:2010/CISPR 11:2015+A1:2016 (Industrial, scientific and medical equipment – Radio-frequency disturbance characteristics – Limits and methods of measurement) IEC 61000-2-2:2002+A1:2017+A2:2018

The device described above is tested by EMTEK (SHENZHEN) CO., LTD. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and EMTEK (SHENZHEN) CO., LTD. is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is compliant with the SANS 211/CISPR 11 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of EMTEK (SHENZHEN) CO., LTD.

Date of Test :	July 10, 2019 to July 12, 2019 & January 20, 2021 to January 27, 2021
Prepared by :	Jessie Hu/Edior
Reviewer :	Jue Ha * FESTING *
Approved & Authorized Signer :	Lisa Wang/Manager

Modified Information

Version	Report No.	Revision Date	Summary	
Ver.1.0	ES190710013E	/	Original Report	
Ver.2.0	ES190710013E	2021-01-28	Add test Voltage Distortion in Differential mode	

1. SUMMARY OF TEST RESULT

EMISSION						
Description of Test Item	Standard	Limits	Results			
Conducted Disturbance at Mains Terminals	SANS 211:2010/CISPR 11:2015+A1:2016	Class B	Pass			
	IEC 61000-2-2: 2002+A1:2017+A2:2018	Table 4	Pass			
Radiated Disturbance	SANS 211:2010/CISPR 11:2015+A1:2016	Class B	Pass			

Note: 1. N/A is an abbreviation for Not Applicable.

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT	:	hybrid inverter
Model Number	:	HYD 6000-ES, HYD 5000-ES, HYD 4000-ES, HYD 3600-ES, HYD 3000-ES (Note: All the models are the same, except their output rating. We prepare HYD 6000-ES for test.)
Applicant	:	Shenzhen SOFAR SOLAR Co., Ltd.
Address	:	401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China
Manufacturer	÷	Shenzhen SOFAR SOLAR Co., Ltd.
Address	:	401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China
Factory	:	Dongguan SOFAR SOLAR Co., Ltd
Address	:	1F-6F, Building E, No.1 JinQi Road, Bihu Industrial Park, Wulian Village, Fenggang Town, Dongguan City
Date of Received	:	July 10, 2019 & January 20, 2021
Date of Test	:	July 10, 2019 to July 12, 2019 & January 20, 2021 to January 27, 2021

2.2. Independent Operation Modes

A. ON

- 1. Charging
- 2. Discharging
- 3. PV in

2.3. Test Manner

Details of EUT Test Modes:

Test Items	Test Voltage	Function Type	Worst case
Conducted disturbance at mains Terminals	AC 220V/50Hz DC 360V DC 48V	Mode A	Mode A.1
Voltage Distortion in Differential mode	AC 220V/50Hz DC 48V	Mode A.1	Mode A.1
Radiated emissions at frequencies up to 1 GHz	AC 220V/50Hz DC 360V DC 48V	Mode A	Mode A.1

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

2.4. Description of Test Facility

Site Description EMC Lab. :	Accredited by CNAS, 2018.11.30 The certificate is valid until 2022.10.28 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01 (identical to ISO/IEC 17025:2017) The Certificate Registration Number is L2291.
	Accredited by FCC Designation Number: CN1204 Test Firm Registration Number: 882943
	Accredited by A2LA The Certificate Number is 4321.01.
	Accredited by Industry Canada The Conformity Assessment Body Identifier is CN0008
Name of Firm : Site Location :	EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China

2.5. Measurement Uncertainty

Test Item Conducted Emission Uncertainty	:	Uncertainty 3.16dB(9k~150kHz Conduction 2#) 2.90dB(150k-30MHz Conduction 2#)
Radiated Emission Uncertainty (10m Chamber)	:	4.58dB (30M~1GHz Polarize: H) 4.54dB (30M~1GHz Polarize: V)
Uncertainty for test site temperature and humidity	:	0.6℃ 4%

3. MEASURING DEVICE AND TEST EQUIPMENT

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
\checkmark	EMI Test Receiver	Rohde & Schwarz	ESCI	101045	May 18, 2019	1 Year
\checkmark	PULSE LIMTER	Rohde & Schwarz	ESH3-Z2	100107	May 18, 2019	1 Year
V	AMN	Rohde & Schwarz	ESH3-Z5	100191	May 18, 2019	1 Year

3.1. For Power Line Conducted Emission Measurement

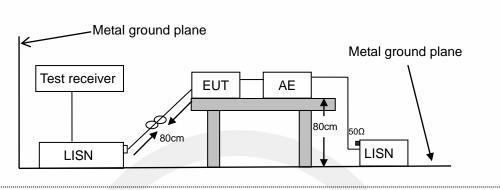
3.2. For Voltage Distortion in Differential mode Measurement

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
\checkmark	EMI Test	Rohde &	ESCI	101045	May 16, 2020	1 Year
Ŀ	Receiver	Schwarz	L301	101043	Way 10, 2020	i ieai
\checkmark	PULSE	Rohde &	ESH3-Z2	100107	May 17, 2020	1 Year
V	LIMTER	Schwarz	E3H3-22	100107	IVIAY 17, 2020	i fear
\checkmark	AMN	Rohde &	ESH3-Z5	100191	May 16, 2020	1 Year
V	AWIN	Schwarz	E3H3-Z3	100191	Way 10, 2020	i fear

3.3. For Radiated Emission Measurement

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
V	EMI Test Receiver	Rohde & Schwarz	ESR3	1316.3003K03- 101706-HN	May 18, 2019	1 Year
\checkmark	EMI Test Receiver	Rohde & Schwarz	ESR3	1316.3003K03- 101707-Z1	May 18, 2019	1 Year
\checkmark	Pre-Amplifier	Lunar EM	LNA10M1G-40	J101113091200 1	May 18, 2019	1 Year
\checkmark	Pre-Amplifier	Lunar EM	LNA10M1G-40	J101113112600 2	May 18, 2019	1 Year
	Bilog Antenna	Schwarzbeck	VULB9163	659	May 19, 2019	1 Year
\checkmark	Bilog Antenna	Schwarzbeck	VULB9163	661	May 19, 2019	1 Year
	Cable	Times Microwave	LMR-240 N-N 1m	SS26-P1	May 19, 2019	1 Year
	Cable	Times Microwave	LMR-240 N-N 1m	SS26-P2	May 19, 2019	1 Year
	Cable	Times Microwave	LMR-240 N-N 1.5m	N/A	May 19, 2019	1 Year
V	Cable	Times Microwave	LMR-240 N-N 1.5m	N/A	May 19, 2019	1 Year
V	Cable	Times Microwave	LMR-240 N-N 12m	N/A	May 19, 2019	1 Year
V	Cable	Times Microwave	LMR-240 N-N 11m	N/A	May 19, 2019	1 Year

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn


Report No. ES190710013E

4. POWER LINE CONDUCTED EMISSION MEASUREMENT

4.1. Block Diagram of Test Setup

LISN: Artificial Mains Network AE: Associated equipment EUT: Equipment under test

4.2. Measuring Standard

SANS 211/CISPR 11

4.3. Power Line Conducted Emission Limits (Group 1 Class B)

Disturbance voltage limits for class B group 1 equipment measured on a test site (a.c. mains power port)

Fre	Frequency		Limits dB(µV)						
	MH	Iz	Quasi-peak Level	Average Level					
			66	56					
0.15		0.50	Decreasing linearly with logarithm of	Decreasing linearly with logarithm of					
0.15	~	0.50	frequency to	frequency to					
			56	46					
0.50	0.50 ~ 5.00		56	46					
5.00 ~ 30.00		30.00	60	50					
Notes: At	the	transition fro	equency, the more stringent lim	it shall apply.					

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

4.4. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided 50ohm-coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the SANS 211/CISPR 11 regulations during conducted emission measurement.

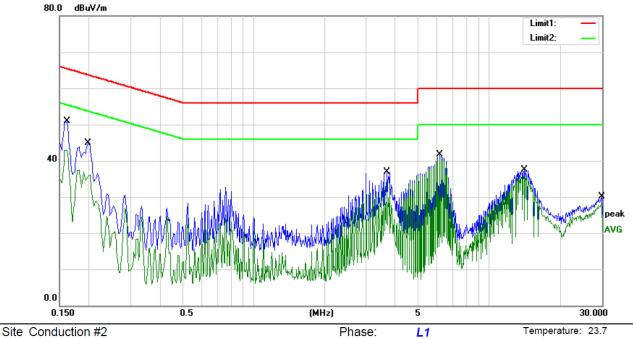
The bandwidth of the field strength meter (R&S Test Receiver ESCS30) is set at 9kHz in 150kHz~30MHz and 200Hz in 9kHz~150kHz.

The frequency range from 150kHz to 30MHz is investigated.

Test results were obtained from the following equation: Emission Level ($dB\mu V$) = AMN Factor (dB) + Cable Loss (dB) + Reading ($dB\mu V$) Margin (dB) = Emission Level ($dB\mu V$) - Limit ($dB\mu V$)

4.5. Measuring Results

PASS.


All the modes were tested and the data of the worst modes are attached the following pages.

Humidity:

41 %

Limit: (CE)CISPR 11 class B_QP Mode: charging Note:

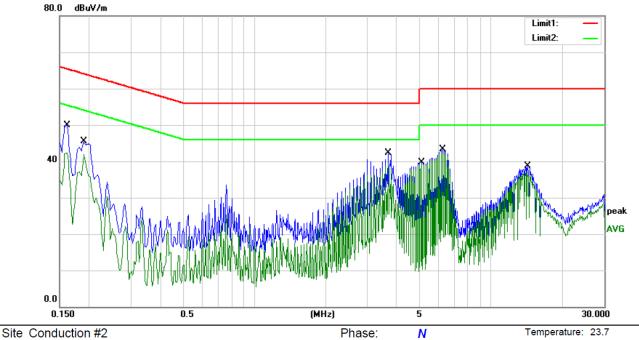
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV/m	dB	dBu∀/m	dBuV/m	dB	Detector	Comment
1		0.1620	40.93	9.90	50.83	65.36	-14.53	QP	
2		0.1620	32.97	9.90	42.87	55.36	-12.49	AVG	
3		0.1980	35.02	9.90	44.92	63.69	-18.77	QP	
4		0.1980	27.56	9.90	37.46	53.69	-16.23	AVG	
5		3.6700	27.02	9.94	36.96	56.00	-19.04	QP	
6		3.6700	24.34	9.94	34.28	46.00	-11.72	AVG	
7		6.1460	31.79	9.97	41.76	60.00	-18.24	QP	
8	*	6.1460	31.06	9.97	41.03	50.00	-8.97	AVG	
9		14.0500	27.48	10.04	37.52	60.00	-22.48	QP	
10		14.0500	25.88	10.04	35.92	50.00	-14.08	AVG	
11		29.9540	19.83	10.31	30.14	60.00	-29.86	QP	
12		29.9540	17.53	10.31	27.84	50.00	-22.16	AVG	

*:Maximum data x:Over limit

nit I:over margin

Comment: Factor build in receiver.

Power: AC 220V/50Hz DC48V


Operator: WZZ

Humidity:

41 %

Power: AC 220V/50Hz DC48V

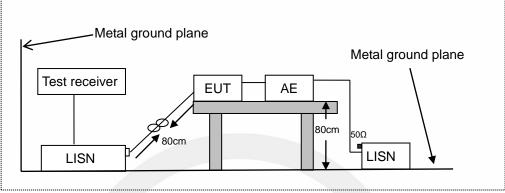
Limit: (CE)CISPR 11 class B_QP Mode: charging Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		0.1620	40.06	9.90	49.96	65.36	-15.40	QP	
2		0.1620	32.40	9.90	42.30	55.36	-13.06	AVG	
3		0.1900	35.54	9.90	45.44	64.04	-18.60	QP	
4		0.1900	32.09	9.90	41.99	54.04	-12.05	AVG	
5		3.6700	32.26	9.94	42.20	56.00	-13.80	QP	
6	*	3.6700	29.40	9.94	39.34	46.00	-6.66	AVG	
7		5.0980	29.82	9.95	39.77	60.00	-20.23	QP	
8		5.0980	29.37	9.95	39.32	50.00	-10.68	AVG	
9		6.2420	33.32	9.97	43.29	60.00	-16.71	QP	
10		6.2420	32.52	9.97	42.49	50.00	-7.51	AVG	
11		14.2420	28.68	10.04	38.72	60.00	-21.28	QP	
12		14.2420	26.98	10.04	37.02	50.00	-12.98	AVG	

*:Maximum data x:0

x:Over limit !:over margin

Comment: Factor build in receiver.


Operator: WZZ

5. VOLTAGE DISTORTION IN DIFFERENTIAL MODE MEASUREMENT

5.1. Block Diagram of Test Setup

LISN: Artificial Mains Network AE: Associated equipment EUT: Equipment under test

5.2. Measuring Standard

IEC 61000-2-2:2002+A1:2017+A2:2018

5.3. Voltage Distortion in Differential mode Limits

Compatibility levels for voltage distortionin differential mode from 30 kHz to 150 kHz^a

Frequency range	Compatibility levels
kHz	dB(µV)
30 to 50 ^b	122 to 119°
50 ^b to 150	113 to 89°

a For EMC coordination in the setting of emission limits for unsymmetrical voltage distortion, see 4.12.1.

b At the transition frequency, the lower level applies.

c The level decreases linearly with the logarithm of the frequency in the ranges 30 kHz to 50 kHz and 50 kHz to 150 kHz.

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

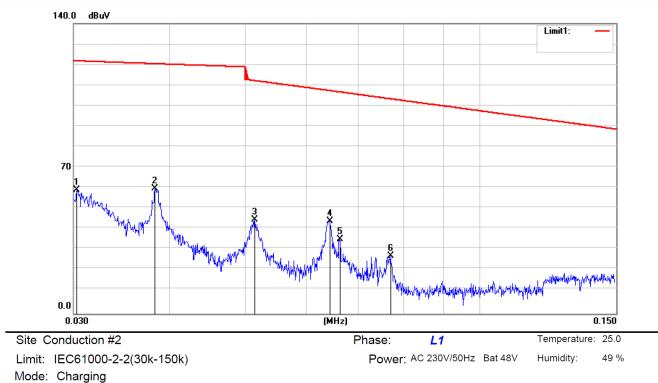
EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

5.4. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided 50ohm-coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the IEC 61000-2-2 regulations during conducted emission measurement. The bandwidth of the field strength meter (R&S Test Receiver ESCI) is set at 200Hz in 30kHz~150kHz.

The frequency range from 30kHz to 150kHz is investigated.

Test results were obtained from the following equation: Emission Level ($dB\mu V$) = AMN Factor (dB) + Cable Loss (dB) + Reading ($dB\mu V$) Margin (dB) = Emission Level ($dB\mu V$) - Limit ($dB\mu V$)


5.5. Measuring Results

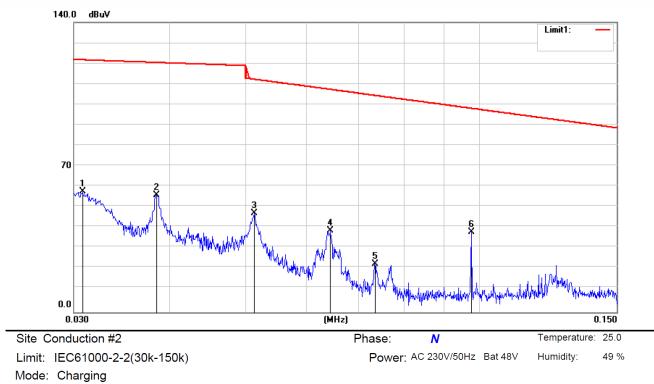
PASS.

All the modes were tested and the data of the worst modes are attached the following pages.

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.0303	49.25	10.47	59.72	121.94	-62.22	QP	
2	*	0.0382	50.07	10.40	60.47	120.58	-60.11	QP	
3		0.0514	34.90	10.26	45.16	112.40	-67.24	QP	
4		0.0642	34.36	10.30	44.66	107.54	-62.88	QP	
5		0.0661	25.75	10.28	36.03	106.90	-70.87	QP	
6		0.0768	17.60	10.29	27.89	103.62	-75.73	QP	

*:Maximum data


x:Over limit !:over margin

Comment: Factor build in receiver.

Operator:

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.0308	47.74	10.46	58.20	121.85	-63.65	QP	
2	0.0383	46.19	10.40	56.59	120.57	-63.98	QP	
3	0.0512	37.65	10.26	47.91	112.48	-64.57	QP	
4	0.0642	29.01	10.30	39.31	107.54	-68.23	QP	
5	0.0733	12.88	10.26	23.14	104.64	-81.50	QP	
6 *	0.0976	28.45	10.28	38.73	98.39	-59.66	QP	

*:Maximum data

x:Over limit !:over margin

Comment: Factor build in receiver.


Operator:

6. RADIATED EMISSION MEASUREMENT (UP TO 1GHz)

6.1. Block Diagram of Test Setup

6.2. Measuring Standard

SANS 211/CISPR 11

6.3. Radiated Emission Limits (Group 1 Class B)

All emanations from a Group 1 Class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT
(MHz) 30 ~ 230	(Meters) 10	(dBµV/m) 30
230 ~ 1000	10	37

Note: (1) The smaller limit shall apply at the combination point between two frequency bands. (2)Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

(3) Intended to be permanently installed in X-ray shielded locations, an increase in the electromagnetic radiation disturbance limits of 12 dB for tests conducted on a test site is allowed.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

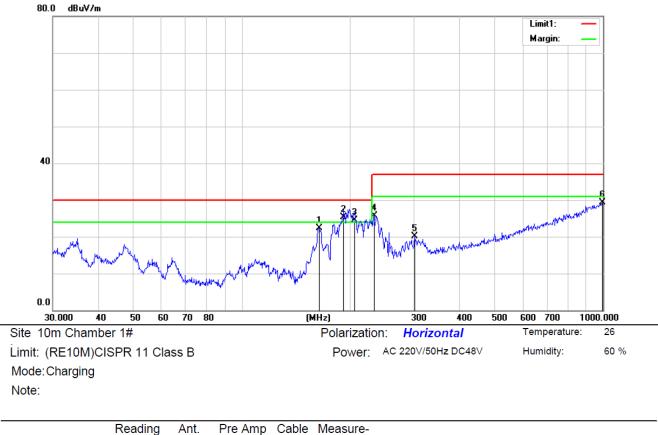
Report No. ES190710013E

6.4. Test Procedure

The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 10 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Bilog antenna (calibrated by Dipole Antenna) is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

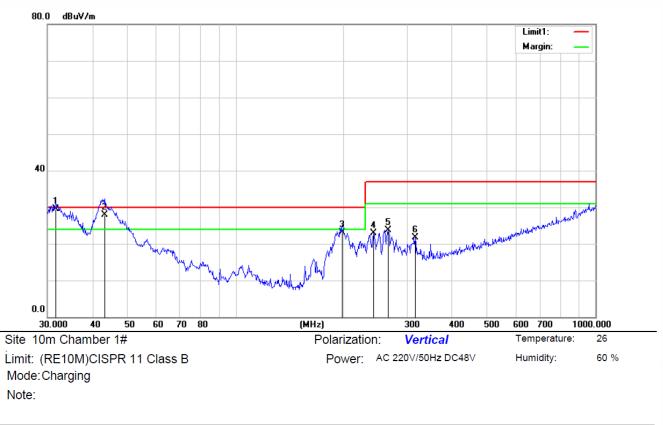
The bandwidth of the Receiver is set at 120kHz.

Test results were obtained from the following equation: Emission level ($dB\mu V/m$) = Antenna Factor -Amp Factor +Cable Loss + Reading Margin (dB) = Emission Level ($dB\mu V/m$) - Limit ($dB\mu V/m$).


6.5. Measuring Results

PASS.

All the modes were tested and the data of the worst modes are attached the following pages


Mk	. Freq.	Reading Level	Ant. Factor	Pre Amp Gain	loss	Measure- ment	Limit	Over		н	Degree	
	MHz	dBu∨	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
	164.3301	55.74	8.37	43.28	1.56	22.39	30.00	-7.61	QP	399	134	
*	191.7450	56.55	10.38	43.14	1.51	25.30	30.00	-4.70	QP	399	153	
İ	205.6751	54.97	11.09	43.07	1.51	24.50	30.00	-5.50	QP	399	295	
	232.5318	55.19	12	42.94	1.55	25.80	37.00	-11.20	QP	399	174	
	301.4224	46.85	13.49	42.6	2.37	20.11	37.00	-16.89	QP	198	121	
	996.4996	38.00	23.97	39.72	7.06	29.31	37.00	-7.69	QP	198	151	
		MHz 164.3301 * 191.7450 ! 205.6751 232.5318 301.4224	Mk. Freq. Level MHz dBuV 164.3301 55.74 * 191.7450 56.55 ! 205.6751 54.97 232.5318 55.19 301.4224 46.85	Mk. Freq. Level Factor MHz dBuV dB/m 164.3301 55.74 8.37 * 191.7450 56.55 10.38 ! 205.6751 54.97 11.09 232.5318 55.19 12 301.4224 46.85 13.49	Mk. Freq. Level Factor Gain MHz dBuV dB/m dB 164.3301 55.74 8.37 43.28 * 191.7450 56.55 10.38 43.14 ! 205.6751 54.97 11.09 43.07 232.5318 55.19 12 42.94 301.4224 46.85 13.49 42.6	Mk. Freq. Level Factor Gain loss MHz dBuV dB/m dB dB 164.3301 55.74 8.37 43.28 1.56 * 191.7450 56.55 10.38 43.14 1.51 ! 205.6751 54.97 11.09 43.07 1.51 232.5318 55.19 12 42.94 1.55 301.4224 46.85 13.49 42.6 2.37	Mk. Freq. Level Factor Gain loss ment MHz dBuV dB/m dB dB dB dBuV/m 164.3301 55.74 8.37 43.28 1.56 22.39 * 191.7450 56.55 10.38 43.14 1.51 25.30 ! 205.6751 54.97 11.09 43.07 1.51 24.50 232.5318 55.19 12 42.94 1.55 25.80 301.4224 46.85 13.49 42.6 2.37 20.11	Mk. Freq. Level Factor Gain loss ment Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m 164.3301 55.74 8.37 43.28 1.56 22.39 30.00 * 191.7450 56.55 10.38 43.14 1.51 25.30 30.00 ! 205.6751 54.97 11.09 43.07 1.51 24.50 30.00 232.5318 55.19 12 42.94 1.55 25.80 37.00 301.4224 46.85 13.49 42.6 2.37 20.11 37.00	Mk. Freq. Level Factor Gain loss ment Limit Over MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 164.3301 55.74 8.37 43.28 1.56 22.39 30.00 -7.61 * 191.7450 56.55 10.38 43.14 1.51 25.30 30.00 -4.70 ! 205.6751 54.97 11.09 43.07 1.51 24.50 30.00 -5.50 232.5318 55.19 12 42.94 1.55 25.80 37.00 -11.20 301.4224 46.85 13.49 42.6 2.37 20.11 37.00 -16.89	Mk. Freq. Level Factor Gain loss ment Limit Over MHz dBuV dB/m dB dB dBuV/m dB Detector 164.3301 55.74 8.37 43.28 1.56 22.39 30.00 -7.61 QP * 191.7450 56.55 10.38 43.14 1.51 25.30 30.00 -4.70 QP ! 205.6751 54.97 11.09 43.07 1.51 24.50 30.00 -5.50 QP 232.5318 55.19 12 42.94 1.55 25.80 37.00 -11.20 QP 301.4224 46.85 13.49 42.6 2.37 20.11 37.00 -16.89 QP	Mk. Freq. Level Factor Gain loss ment Limit Over HI MHz dBuV dB/m dB dB dBuV/m dB Detector cm 164.3301 55.74 8.37 43.28 1.56 22.39 30.00 -7.61 QP 399 * 191.7450 56.55 10.38 43.14 1.51 25.30 30.00 -4.70 QP 399 ! 205.6751 54.97 11.09 43.07 1.51 24.50 30.00 -5.50 QP 399 232.5318 55.19 12 42.94 1.55 25.80 37.00 -11.20 QP 399 301.4224 46.85 13.49 42.6 2.37 20.11 37.00 -16.89 QP 198	Mk. Freq. Level Factor Gain loss ment Limit Over HI Degree MHz dBuV dB/m dB dB dBuV/m dB Detector cm deg. 164.3301 55.74 8.37 43.28 1.56 22.39 30.00 -7.61 QP 399 134 * 191.7450 56.55 10.38 43.14 1.51 25.30 30.00 -4.70 QP 399 153 ! 205.6751 54.97 11.09 43.07 1.51 24.50 30.00 -5.50 QP 399 295 232.5318 55.19 12 42.94 1.55 25.80 37.00 -11.20 QP 399 174 301.4224 46.85 13.49 42.6 2.37 20.11 37.00 -16.89 QP 198 121

*:Maximum data x:Over limit !:over margin

Operator: CSL

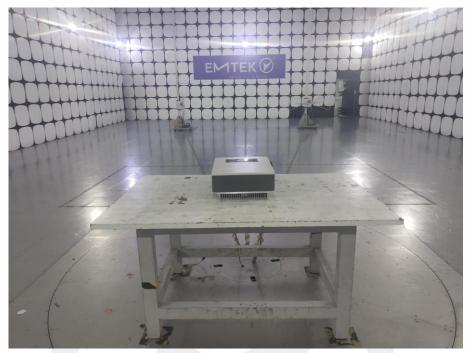
No.	Mk	. Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		HI	Degree	
		MHz	dBu∨	dB/m	dB	dB	dBuV/m	dBu∀/m	dB	Detector	cm	deg.	Comment
1	*	31.6202	60.68	10.84	43.02	1	29.50	30.00	-0.50	QP	199	22	
2	İ	43.2017	56.32	13.62	43.08	1.04	27.90	30.00	-2.10	QP	299	359	
3		197.8928	52.87	11.03	43.2	2.4	23.10	30.00	-6.90	QP	100	99	
4		241.6763	50.83	12.4	43.12	2.8	22.91	37.00	-14.09	QP	100	118	
5		265.6757	50.52	12.99	43.07	3.27	23.71	37.00	-13.29	QP	100	204	
6		315.4808	46.36	13.75	42.94	4.44	21.61	37.00	-15.39	QP	100	206	

*:Maximum data x:Over limit !:over margin

Operator: CSL

7. PHOTOGRAPHS

7.1. Photos of Conducted Emission Measurement


- 7.2. Photos of Voltage Distortion in Differential mode Measurement



7.3. Photos of Radiation Emission Measurement

-----The end------